Bauplan and the evolution of morphologies through heterochrony
نویسنده
چکیده
Vertebrate Hox genes are essential for the proper organization of the body plan during development. Inactivation of these genes usually leads to important alterations, or transformations, in the identities of the affected developing structures. Hox genes are activated in a progressive temporal sequence which is colinear with the position of these genes on their respective complexes, so that tanteriort genes are activated earlier than tposteriort ones (temporal colinearity). Here, an hypothesis is considered in which the correct timing of activation of this gene family is necessary in order to properly establish the various expression domains. Slight modifications in the respective times of gene activation (heterochronies) may shift expression domains along the rostrocaudal axis and thus induce concurrent changes in morphologies. It is further argued that temporal colinearity only occurs in cells with high mitotic rateso which results in a strong linka$ between patterning and growth control and makes the patterning process unidirectional, from anterior, proximal and early, to posterior, distal and late, a model referred to as the 'Einbahnstrasse'. While the nature of the mechanism(s) behind temporal and spatial colinearities is unknownr it is proposed that such a mechanism relies on meta-cis interactions, that is it may necessitate gene contiguity. Such a mechanism would be based on DNA-specific, rather than gene-specific, features such as chromatin configurations or DNA replication. The existence of such a meta-cis mechanism would explain the extraordinary conservation of this genetic system during evolution as its basic properties would be linked to that of the genetic material itself. Consequentlyrit is hypothesized that, in vertebrates, the resistance of this mechanism to evolutionary variations may be the reason for the existence of a short developmental window of morphological invariance (the phylotypic progression).
منابع مشابه
Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony.
Vertebrate Hox genes are essential for the proper organization of the body plan during development. Inactivation of these genes usually leads to important alterations, or transformations, in the identities of the affected developing structures. Hox genes are activated in a progressive temporal sequence which is colinear with the position of these genes on their respective complexes, so that 'an...
متن کاملDevelopmental basis of limb evolution.
Can developmental processes account for vertebrate limb homology, the overall similarity of definitive limb structure despite differences in different taxa which often relate to evolutionary adaptations? Relevant evidence is from molecular studies, from 'cut & paste' experimental embryology and from classical descriptive accounts of embryology and structure. There is striking evidence of a simi...
متن کاملCranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs
Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis, to short and box-shaped skulls, such as in the sauropod Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasi...
متن کاملA model framework for identifying genes that guide the evolution of heterochrony.
Heterochrony, the phylogenic change in the time of developmental events or rate of development, has been thought to play an important role in producing phenotypic novelty during evolution. Increasing evidence suggests that specific genes are implicated in heterochrony, guiding the process of developmental divergence, but no quantitative models have been instrumented to map such heterochrony gen...
متن کاملHeterochrony revisited: the evolution of developmental sequences
The concept of heterochrony is a persistent component of discussions about the way that evolution and development interact. Since the late 1970s heterochrony has been defined largely as developmental changes in the relationship of size and shape. This approach to heterochrony, here termed growth heterochrony, is limited in the way it can analyse change in the relative timing of developmental ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010